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ABSTRACT: We present a methodology for implementing
discrete-time signal processing operations, such as filtering,
with molecular reactions. The reactions produce time-varying
output quantities of molecules as a function of time-varying
input quantities according to a functional specification. This
computation is robust and independent of the reaction rates,
provided that the rate constants fall within coarse categories.
We describe two approaches: one entails synchronization with
a clock signal, implemented through sustained chemical
oscillations; the other is “self-timed” or asynchronous. We
illustrate the methodology by synthesizing a simple moving-
average filter, a biquad filter, and a Fast Fourier Transform
(FFT). Abstract molecular reactions for these filters and
transforms are translated into DNA strand displacement reactions. The computation is validated through mass-action simulations
of the DNA kinetics. Although a proof of concept for the time being, molecular filters and transforms have potential applications
in fields such as biochemical sensing and drug delivery.
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Electronic systems performing computation are pervasive in
our modern lives. In addition to general-purpose

computers, we have all manner of embedded controllers in
our machines and gadgets. Electronic interfacing with biological
systems is common, for instance, in biomedical devices. Such
interfacing permits computational processing of biological data
and actuation of responses, for instance, targeted drug delivery.
In some situations, one might want to implement

computation directly with biological mechanisms. For example,
one might want to implement a molecular mechanism for
detecting protein markers of cancer and producing drugs
targeted precisely to cancerous cells.1,2 This could be achieved
through genetic engineering, using bacterial or viral delivery
systems. In essence, this approach is analogous to implement-
ing embedded controllers with purely biological components.
Whereas electronic systems perform computation in terms of

voltage, i.e., energy per unit charge, one can design molecular
systems to perform computation in terms of molecular
concentrations, i.e., molecules per unit volume. A particularly
promising strategy for such computation is based on the
mechanism of DNA strand displacement.3,4

The past few decades have seen a remarkable progress in the
design of integrated circuits for signal processing for
applications such as audio and video.5 In abstract terms, signal
processing circuits are input-output systems that transform given
time-varying input signals into desired time-varying output
signals. By interconnecting a few basic building blocks, namely,
multipliers, adder, and delay units, complex signal processing
systems can be synthesized. Signal processing operations are
either “discrete-time” meaning that values are sampled and

produced at specific points in time or “continuous-time”
meaning that inputs are continuously transformed into outputs.
In this paper we present a methodology for implementing

discrete-time signal processing operations with molecular
reactions. We present two different frameworks: (1) a
synchronous approach that transfers concentrations based on a
molecular clock, and (2) a “self-timed” or asynchronous
approach that transfers concentrations between molecular
types based on the absence of other types. We illustrate our
methodology with the design of a moving-average filter, a
biquad filter, and an 8-point Fast Fourier Transform (FFT). We
present both synchronous and asynchronous versions of each
of these constructs.
For clarity, the methodology is first presented in terms of

abstract molecular types; then a mapping to DNA strand
displacement reactions is discussed. Critical for mapping to
DNA, all of our designs consist of bimolecular reactions, that is
to say, reactions with exactly two reactant molecules. In the
mapping to DNA, we use experimental parameters similar to
those of Soloveichik et al.4 We generate differential equations
corresponding to the mass-action chemical kinetics of the DNA
reactions and simulate these to characterize the behavior of the
designs. Such simulations of the chemical kinetics provide a
reasonably accurate prediction of the actual in vitro behavior.
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A molecular system consists of a set of chemical reactions,
each specifying a rule for how different types of molecules
combine. For instance,

+ →X X X
k

1 2 3

specifies that one molecule of X1 combines with one molecule
of X2 to produce one molecule of X3 at the rate k, referred to as
the rate constant. If these molecular dynamics are represented in
terms of mass-action kinetics, then the reaction rates are
proportional to the concentrations of the participating
molecular types and to the rate constant. Accordingly, for the
above reaction, the rate of change in the concentrations of X1,
X2, and X3 is given by
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where [X] denotes the concentration of the entity X. Such a
differential equation representation suggests immediate paral-
lels with the systems developed in the field of electrical
engineering.
Most prior schemes for molecular computation depend on

specific values of the rate constants, which limits the
applicability since the rate constants are not constant at all;
they depend on factors such as cell volume and temperature.
Accordingly, the results of the computation are not robust. We
aim for robust constructs: in our methodology we require only
two coarse rate categories for the rate constants, i.e., kfast and
kslow. Given reactions with any such set of rates, the
computation is exact. It does not matter how fast the “fast”
reactions are or how slow the “slow” reactions are − only that
all fast reactions fire relatively faster than slow reactions.

■ METHODOLOGY
We present two frameworks for discrete-time signal processing.
The first is a synchronous framework; the second is a “self-
timed” or asynchronous framework. We will first illustrate both
schemes with a simple example, a moving-average filter.
The circuit diagram for the filter is shown in Figure 1. It

produces an output value that is one-half the current input

value plus one-half the previous value. Given a time-varying
input signal X, the output signal Y is a moving average, i.e., a
smoother version of the input signal. Since there is no feedback
in the system, it is called a f inite impulse response (FIR) filter.5

a. Synchronous Framework. The synchronous framework
is illustrated in general terms in Figure 2. As in an electronic
system, this molecular system has separate constructs for
computation and for memory. A clock signal synchronizes
transfers signals between the two. Here we give a simplified
description of these mechanisms pertaining to the moving-

average filter. Molecular reactions for generating the clock
signal, for the memory constructs, and for the computational
constructs are described in detail in later sections.
The delay and computation elements for the moving average

filter in Figure 3 are implemented by the reactions in Figure 4.

We assume that a two-phase clock generates and consumes
the molecular types R and B in alternating fashion. In the
presence of B, the input signal X is transferred to molecular
types A and C; these are both reduced to half and transferred to
D′ and Y, respectively. In the presence of R, D′ is transferred to
D. Details regarding how the clock signals R and B are
generated are given in a later section.

b. Asynchronous Framework. The asynchronous frame-
work is illustrated in Figure 5. It contains no clock signal; rather
it is “self-timed” in the sense that a new phase of the
computation begins when an external sink removes the entire
quantity of molecules Y, i.e., the previous output value, and

Figure 1. Circuit diagram for the moving-average filter.

Figure 2. Synchronous framework.

Figure 3. Synchronous implementation of the moving-average filter.

Figure 4. Set of molecular reactions for the synchronous
implementation of the moving-average filter.
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supplies a new quantity of molecules X, i.e., the current input
value.
In this framework, the moving-average filter is implemented

by the reactions in Figure 6. The molecular types
corresponding to signals are X, A, C, R, G, B, and Y. To
illustrate the design, we use colors to categorize some of these
types into three categories: Y and R in red; G in green; and X
and B in blue. The group of the first three reactions shown in
the S1 column of Figure 6 transfers the concentration of X to A
and to C, a fanout operation. The concentrations of A and C are
both reduced to half, scalar multiplication operations. The
concentration of A is transferred to the output Y, and the
concentration of C is transferred to R. The transfer to R is the
first phase of a delay operation. Once the signal has moved
through the delay operation, the concentration of B is
transferred to the output Y. Since this concentration is
combined with the concentration of Y produced from A, this
is an addition operation.
The final group of three reactions shown in the S1 column of

Figure 6 implements the delay operation. The concentration of
R is transferred to G and then to B. Transfers between two
color categories are enabled by the absence of the third
category: red goes to green in the absence of blue; green goes
to blue in the absence of red; and blue goes to red in the
absence of green. The reactions are enabled by molecular types
r, g, and b that we call absence indicators. The absence indicators
ensure that the delay element takes a new value only when it
has finished processing the previous value.
In the group of reactions shown in the S2 column of Figure 6

molecules of types R′, G′, and B′ are generated from the signal
types that we color-code red, green, and blue, respectively. The

concentrations of the signal types remain unchanged. (These
reactions appear to violate conservation of mass. In fact, when
mapped to DNA reactions, there are external “fuel” types.)
Meanwhile, R′, G′, and B′ are consumed by external sinks,
denoted by ⌀. When mapped to DNA, these reactions produce
the “waste” types. Here, all reactions are expressly designed to
have two reactants; this permits us to map the reactions to
DNA strand displacement reactions effectively. This gener-
ation/consumption process ensures that equilibria of the
concentrations of R′, G′, and B′ reflect the total concentrations
of red, green, and blue color-coded types, respectively.
Accordingly, we call R′, G′, and B′ color concentration indicators.
They serve to speed up signal transfers between color
categories.
In the group of reactions shown in the S3 column of Figure

6, molecules of the absence indicator types r, g, and b are
generated from external sources Sr, Sg, and Sb. At the same time,
they are consumed when R′, G′, and B′ are present,
respectively. Therefore, the absence indicators only persist in
the absence of the corresponding signals: r in the absence of
red types; g in the absence of green types; and b in the absence
of blue types. They only persist in the absence of these types
because otherwise “fast” reactions consume them quickly.
Finally, the group of reactions shown in the S4 column of

Figure 6 provides positive feedback kinetics. These reactions
effectively speed up transfers between color categories as
molecules in one category are “pulled” to the next by color
concentration indicators. Note that the concentration of the
input X is sampled in the green-to-blue phase. We assume that
an external source supplies the input. The output Y is produced
in the blue-to-red phase. We assume that an external sink
consumes these molecules.

Clock. In electronic circuits, a clock signal is generated by an
oscillatory circuit that produces periodic voltage pulses. For a
molecular clock, we choose reactions that produce sustained
oscillations in terms of chemical concentrations. With such
oscillations, a low concentration corresponds to a logical value
of zero; a high concentration corresponds to a logical value of
one.
Techniques for generating chemical oscillations are well

established in the literature. Classic examples include the Lotka-
Volterra, the “Brusselator”, and the Arsenite-Iodate-Chlorite
systems.6,7 Unfortunately, none of these schemes are quite

Figure 5. Aynchronous implementation of the moving-average filter.

Figure 6. Set of molecular reactions for the asynchronous implementation of the moving-average filter.
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suitable for synchronous sequential computation: we require
that the clock signal be symmetrical, with abrupt transitions
between the phases. Here, we present a new design for an n-
phase chemical oscillator (n ≥ 3). The clock phases are
represented by molecular types P1, P2, ..., Pn. First consider the
reactions

⎯ →⎯⎯ + ⎯ →⎯⎯ +

⎯ →⎯⎯ +

S a S S a S

S a S

2 2 , 2 2 , ...,

2 2

k k

n
k

n n

1 1 1 2 2 2
slow slow

slow
(3)

+ ⎯→⎯ + ⎯→⎯ + ⎯→⎯P a P P a P P a P, , ...,
k k

n n
k

n1 1 1 2 2 2
fast fast fast

(4)

In reactions 3, the molecular types a1, a2, ..., an are generated
slowly and constantly, from source types S1, S2, ..., Sn, whose
concentrations do not change with the reactions. Here, all
reactions are expressly designed to have two reactants; as
discussed above, this permits us to map the reaction to DNA
strand displacement reactions effectively.
In reactions 4, the types P1, P2, ..., Pn quickly consume the

types a1, a2, ..., an, respectively. Call P1, P2, ..., Pn the phase
signals and a1, a2, ..., an the absence indicators. The latter are only
present in the absence of the former. The reactions

+ ⎯ →⎯⎯ + ⎯ →⎯⎯ + ⎯ →⎯⎯−P a P P a P P a P, , ...,n
k k

n n
k

1 2 2 1 3 1 1
slow slow slow

(5)

transfer one phase signal to another, in the absence of the
previous one. The essential aspect is that, within the P1, P2, ...,
Pn sequence, the full quantity of the preceding type is
transferred to the current type before the transfer to the
succeeding type begins. To achieve sustained oscillation, we
introduce positive feedback. This is provided by the reactions

⎯ →⎯⎯ ⎯→⎯ + ⎯→⎯

⎯ →⎯⎯ ⎯→⎯ + ⎯→⎯
⋮

⎯ →⎯⎯ ⎯ →⎯⎯ + ⎯→⎯−

P I I P P I P

P I I P P I P

P I I P P I P

2 , 2 4 , 3

2 , 2 4 , 3

2 , 2 4 , 3

k k
n

k

k k k

n
k

n n n n n
k

n

1 1 1 1 1 1

2 2 2 2 1 2 2

k
1

slow fast fast

slow fast fast

slow fast fast
(6)

Consider the first three reactions. Two molecules of P1
combine with one molecule of Pn to produce three molecules of
P1. The first step in this process is reversible: two molecules of
P1 can combine, but in the absence of any molecules of Pn, the
combined form will dissociate back into P1. So, in the absence
of Pn, the quantity of P1 will not change much. In the presence
of Pn, the sequence of reactions will proceed, producing one
molecule of P1 for each molecule of Pn that is consumed. Due
to the first reaction, the transfer will occur at a rate that is
superlinear in the quantity of P1; this speeds up the transfer and
so provides positive feedback. Suppose that the initial quantity
of P1 is set to some non-zero amount, and the initial quantity of
the other types is set to zero. We will get an oscillation among
the quantities of P1, P2, ..., Pn.
One requirement for a clock in synchronous computation is

that different clock phases should not overlap. In this paper we
use a two-phase clock for synchronous structures: concen-
trations of molecular types representing clock phase “0” and
clock phase “1” should not be present at the same time. To this
end, we choose two nonadjacent phases, P1 and P3 in a four-
phase oscillator, as the clock phases. For a clearer illustration,
we use R(ed) to denote P1 and B(lue) to denote P3.

Our scheme for chemical oscillation works well. Figure 7
shows the concentrations of R and B as a function of time,

obtained through differential equation simulations of the
reactions 3, 4, 5 and 6. It may be noted that the two phases
R and B are essentially non-overlapping.

■ DELAY ELEMENTS
a. Synchronous Delay Elements. To implement

sequential computation, we must store and transfer signals
across clock cycles. In electronic systems, storage is typically
implemented with flip-flops. In our molecular system, we
implement storage and transfer using a two-phase protocol,
synchronized on phases of our clock. As Figure 8 illustrates,

every memory unit is assigned two molecular types D′i and Di.
Here D′i is the first stage and Di the second. The blue phase
reactions are

+ ⎯ →⎯⎯ +

⎯→⎯ ′

B D B

D

computations

computations

i
k

k
i

slow

fast
(7)

Every delay unit releases the signal it stores in its second
stage Di. The released signal is operated on by reactions in
computational modules. These generate results and push them
into the first stages of succeeding memory units. Note that D′i
molecules will be the first stage of any succeeding memory unit
along the signal path. The red phase reactions are

+ ′ ⎯ →⎯⎯ +R D D Ri
k

i
slow

(8)

A delay unit transfers the signal it stores in D′i to Di, preparing
for the next cycle. It is the equivalent of a delay (D) f lip-f lop in
an electronic system.

b. Asynchronous Delay Elements. In our asynchronous
scheme, we implement delay elements by transferring
concentrations between molecular types based on the absence

Figure 7. Differential equation simulation of the chemical kinetics of
our proposed N-phase clock. In this simulation, N is set to 2. In
principle, the amplitude and frequency of oscillations can be
controlled.

Figure 8. A delay element in the synchronous scheme.
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of other types. Each delay element DEi is assigned three
molecular types R(ed)i, G(reen)i and B(lue)i. Let b be an absence
indicator for B. The element is implemented by the following
reactions:

• Phase 1 reactions: b + Ri ⎯ →⎯⎯
kslow Gi, G ′ + Ri ⎯→⎯

kfast Gi.

• Phase 2 reactions: b + Gi ⎯ →⎯⎯
kslow Bi, B′ + Gi ⎯→⎯

kfast Bi.

• Phase 3 reactions: g + Bi ⎯ →⎯⎯
kslow computations, R′ + Bi ⎯→⎯

kfast

computations.

A computation cycle, in which an input value is accepted and
an output value is computed, completes in three phases. The
input X is injected in phase 2 and the output Y is collect in
phase 1. In each phase the signals are transferred from
molecular types in one color category to the next.
Computations, including scalar multiplication, addition, and
fanout, are carried out in phase 3, during the transfer from blue
to red:

⎯→⎯ Rcomputations
k

j
fast

This is illustrated in Figure 9(i).

We use the notation Delay(Ri,Gi,Bi,{output_list}) to represent
the above three reactions. Here, {output_list} is a list of
molecular types that Bi should be transferred to during phase 3.
The input X is labeled blue, therefore, reactions

+ ⎯ →⎯⎯ ′ + ⎯→⎯g X R Xcomputations, computations
k kslow fast

also fire in phase 3. We use Input(X,{output_list}) to represent
these reactions.
The computation reactions fire much faster than the transfer

reactions, so molecules of Rj are immediately produced from
molecules of Bi. Thus, reactions in phase 3 effectively transfer
blue signals to red signals. Note that Rj produced in phase 3 will
be a red type of any succeeding delay element DEj along the
signal path from DEi. In Figure 9ii, R1 and R2 are red; G1 and G2
are green; B1 and B2 are blue. The multiplier is the computation
that occurs between the delay elements. DE2 is a succeeding
delay element of DE1, so molecules of B1 are transferred to R2
in phase 3. For each delay element, the color concentration

types R′, G′, and B′ are generated and consumed in the
following reactions:

⎯→⎯ + ′ ⎯→⎯ + ′ ⎯→⎯ + ′

⎯→⎯ + ′ ⎯→⎯ + ′ ′ ⎯→⎯ ⌀ ′

⎯ →⎯⎯ ⌀ ′ ⎯ →⎯⎯ ⌀

R R R Y Y R G G G

B B B X X B R G

B

2 2 , 2 2 , 2 2 ,

2 2 , 2 2 , 2 , 2

, 2

i
k

i
k

i
k

i

i
k

i
k k

k k

fast fast fast

fast fast fast

fast fast
(9)

So molecules of R′, G′, and B′ are generated by types of the
corresponding color categories; they are consumed by external
sinks. The equilibrium levels of these three types are
determined by total concentrations of all the red types, blue
types, and green types, respectively. Note that these reactions
are in the “fast” category, since the color concentration types
cannot lag the signal types. We use Conc(R′,{red_type_list}),
Conc(G′,{green_type_list}), (B′,{blue_type_list}) to represent

Reactions 9. For example, Conc(R′,{R1,Y}) represents 2R1 ⎯→⎯
kfast

2R1 + R′, 2Y ⎯→⎯
kfast 2Y + R′, 2R′⎯→⎯

kfast ⌀. For delay elements, the
following reactions generate the absence indicator types r, g,
and b:

⎯ →⎯⎯ + ′ + ⎯→⎯ ′ ⎯ →⎯⎯ +

′ + ⎯→⎯ ′ ⎯ →⎯⎯ + ′ + ⎯→⎯ ′

S S r R r R S S g

G g G S S b B b B

2 2 , , 2 2

, 2 2 ,

r
k

r
k

g
k

g

k
b

k
b

k

slow fast slow

fast slow fast
(10)

We use the notation Abs(Sr,Sg,Sb,r,g,b,R′,G′,B′) to represent
these reactions. Here r, g, and b are continually and slowly
generated. However, they persist only in the absence of the
corresponding color-coded types, since they are quickly
consumed by R′, G′, and B′, respectively, if these are present.
All transfers are initiated by absence indicators and then sped
up by the color concentration indicators. The transfers initiated
by the absence indicators are slow, and those initiated by the
color concentration indicators are fast. This mitigates against
“leakage”, e.g., some transferring from Gi to Bi before all of
transferring from Ri to Gi is complete.
Note that, in any system, there are only three color

concentration indicators (R′, G′, and B′) and three absence
indicators (r, g, and b), regardless of the number of delay
elements. These types help enable and speed up signal transfers
for all reactions in the corresponding color categories. Through
these common indicators, the corresponding phases of all delay
elements are synchronized: all of the delay elements must wait
for each to complete its current phase before they can move to
the next phase.

■ COMPUTATIONS
General signal processing operations can be specified in terms
of three basic modules: scalar multiplication, addition, and
delay elements. Above, we discussed delay elements in detail.
Scalar multiplication and addition are much simpler.
Scalar multiplication performs the operation

=y
c
c

x2

1

where c1 and c2 are constants. This operation is implemented by
choosing reactions with the appropriate coefficients:

→c X c Y1 2

Every time this reaction fires, c1 molecules of X get transferred
to c2 molecules of Y. Once the reaction has fired to completion,

Figure 9. (i) Implementing delay elements using the 3-phase
asynchronous scheme. (ii) Cascaded delay elements implemented
using the asynchronous scheme.
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i.e., fully consumed all molecules of X, the requisite operation
of scalar multiplication is complete.
Addition performs the operation y = x1 + x2. This operation

is implemented by choosing two or more reactions with the
same product:

⎯→⎯

⎯→⎯

X Y

X Y

2 2

2 2

k

k

1

2

fast

fast

For implementation with DNA, we choose bimolecular

reactions instead of unimolecular transfers, such as X1 ⎯→⎯
kfast Y.

Once both of these reactions have fired to completion, the
concentration of Y will be the former concentration of X1 plus
the former concentration of X2. It should be noted that
implementations of multiplication and addition are the same in
the synchronous and asynchronous schemes.

■ BIQUAD FILTER

We illustrate the general design method with a second detailed
example, a biquad filter. The circuit diagram for the filter is
shown in Figure 10i. Since this design has feedback, it is called
an infinite impulse response (IIR) filter. Biquad filters are basic
building blocks of modern signal processing systems. Highly

stable, high-order filters can be implemented by cascaded
biquad blocks.5

a. Synchronous Biquad Filter. The following reactions
provide a synchronous implementation of the biquad filter.

+ ⎯ →⎯⎯ + + ′

+ ⎯ →⎯⎯ + + + ′

+ ⎯ →⎯⎯ + +

B X B A D

B D B F C D

B D B H E

k

k

k

1

1 2

2

slow

slow

slow
(11)

⎯→⎯ ⎯→⎯ ⎯→⎯

⎯→⎯ ⎯→⎯ ⎯→⎯

⎯→⎯ ⎯→⎯ ⎯→⎯

⎯→⎯ ⎯→⎯ ⎯→⎯

⎯→⎯ ⎯→⎯ ⎯→⎯

A A A A A Y

C C C C C Y

E E E E E Y

F F F F F X

H H H H H X

2 , 2 , 2 ,

2 , 2 , 2 ,

2 , 2 , 2 ,

2 , 2 , 2 ,

2 , 2 , 2

k k k

k k k

k k k

k k k

k k k

2 2 4 4

2 2 4 4

2 2 4 4

2 2 4 4

2 2 4 4

fast fast fast

fast fast fast

fast fast fast

fast fast fast

fast fast fast
(12)

+ ′ ⎯ →⎯⎯ +

+ ′ ⎯ →⎯⎯ + ′

R D R D

R D R D

k

k

1 1

2 2

slow

slow
(13)

In the set of reactions 11, with clock phase B, signal X is
transferred to A and D′1 ; D1 is transferred to C, F and D′2 ; D2
is transferred to H and E. In the set of reactions 12, temporary
signals A, C, E, F and H are multiplied by (1/8) and transferred
to either X or Y. In the set of reactions 13, with clock phase R,
signal transfers inside memory units take place.

b. Asynchronous Biquad Filter. An asynchronous
implementation of the biquad filter is shown in in Figure
10ii. It is realized by the following reactions:
• Delay elements: Delay(R1,G1,B1,{R2,F,C}), Delay(R2,G2,B2,

{H,E}).
• System input: Input(X,{R1,A}).
• Scalar multiplications: Mult(A,Y,8,1),(C,Y,8,1),(E,Y,8,1),

(F,X,8,1),(H,X,8,1).
• Concentration indicators: Conc(R′,{R1,R2,Y}), Conc(G′,

{G1,G2}), Conc(B′,{B1,B2,X}).
• Absence indicators: Abs(Sr,Sg,Sb,r,g,b,R′,G′,B′).

■ 8-POINT RFFT
The N-point Discrete Fourier Transfer (DFT)8 is defined
mathematically as

∑= = −π

=

−
−X k x n k N[ ] ( ) e 0, 1, ..., 1

n

N
i k n N

0

1
2 /

(14)

(here i is the imaginary unit).
The DFT represents decomposition of a sequence of values

x(n) into components of different frequencies, X[k]. In essence,
it transforms a signal from the time domain to the spectral or
frequency domain. Such a transform is useful for a wide variety
of applications; indeed, it is ubiquitous in communication
systems.
The so-called Fast Fourier Transform (FFT) algorithm is a

computationally less expensive alternative to the DFT. In the
FFT, the input sequence is first divided to two subsequences:
the even and odd indexed samples. Replacing the original
sequence by a sum of such shorter sequences simplifies the

Figure 10. (i) Circuit diagram of a biquad filter. (ii) A biquad filter in a
3-phase asynchronous configuration.
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transform. Repeating this, the entire transform can be
converted to a set of 2-point DFT elements called “butterfly”
(BF) units. A BF unit is shown in Figure 13i.
It is easy to show that for real valued signals, we have

= * −X k X N k[ ] [ ] (15)

So it is not necessary to compute all of the FFT coefficients. By
eliminating the computations of ((N/2) − 1) conjugate-
symmetric outputs and separating them into real and imaginary
parts, one obtains the structure shown in Figure 11, called a
real-valued FFT (RFFT).

Using folding methods,5 this structure can be mapped to the
4-parallel pipelined architecture shown Figure 12. I1, I2, I3, and
I4 sample x(0), x(1), x(2), and x(3), in the first clock cycle, and
x(4), x(5), x(6), and x(7) in the second cycle, respectively. We
describe how this architecture can be realized by molecular
reactions.
The structure shown in Figure 12 consists of BFs, multipliers,

and multiplexers. These operations and the corresponding
molecular reactions are shown in Figure 13. We need to
estimate multiplication by √2. Because √2 ≃ 1+ (1/4) + (1/
8), multiplication by √2 can be implemented as shown in
Figure 13ii. Activation for control signals of multiplexer, S1 and
S2, should alternatively be toggled for every new input set. In
the synchronous scheme, activation of S1 and S2 toggles in
phase B of the clock, whereas in the asynchronous scheme, it
toggles in G phase.

The RFFT architecture is implemented using computation
modules and delay units, as well as the elements shown in
Figure 13. Because concentration of a molecular type cannot be
negative, we use one molecular type for positive and another
one for negative part of each signal. Finally these two parts
cancel out each other, and the one that has larger concentration
determines the sign of that signal. For example, if xp and xn
represent positive and negative part of signal x, then the
following reactions performs the positive/negative cancellation:

+ ⎯→⎯ ⌀x x
k

p n
fast

(16)

(Here ⌀ denotes a waste product that we do not track.) For
simplicity, in Figure 13 we present only reactions related to
positive part. The reactions for negative part are analogous.

■ SIMULATION RESULTS

Mapping to DNA Strand Displacement. Given a
specification of an abstract set of molecular reactions that
implements the requisite computation, the next step is to map
it to specific molecular reactions. We describe a mapping to
DNA strand displacement reactions. The reader is referred to
Soloveichik et al. for a detailed discussion of this mechanism.4

The following is a simple example.
Consider the DNA strand displacement reaction shown in

Figure 14. Here a single strand of DNA R1 replaces the top
strand of a double-strand DNA L; this generates a double
strand H and a single strand B. (This reaction is reversible.)
One of the top strands of the double strand H can be replaced
by a single strand R2, generating a single strand O. Then O
replaces the top strand of T, releasing P. (Note that the strands
L, G, and T are “fuel” sources. It is assumed that there is an
abundant source of these; the concentrations do not matter.)
The signals are the concentrations of R1, R2, and P. This
sequence of strand displacements implements the abstract

chemical reaction: R1 + R2 →
k
P.

Simulation Results. To validate our designs for moving-
average filter, the biquad filter, and the Fast Fourier Transform,
we map their bimolecular reactions to DNA strand displace-
ment reactions, using the method discussed in Soloveichik et
al.4 We generate the corresponding system of kinetic
differential equations using similar parameters to Soloveichik
et al. We simulate the differential equations to characterize the
behavior of the system.
The initial concentrations of auxiliary complexes is set to

Cmax = 10−5 M, and the maximum strand displacement rate
constant is qmax = 106 M−1 s−1. The rate constant for the “slow”
reactions is set to kslow = 5.56 × 104 M−1 s−1. For “fast”

Figure 11. RFFT for 8-point sequence x(n). Xr and Xi represent real
and imaginary parts of the output, respectively.

Figure 12. Folded 8-point 4-parallel RFFT.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300087n | ACS Synth. Biol. 2013, 2, 245−254251



reactions it is set to kfast = 3 × kslow. The initial concentrations
of Sr, Sg, and Sb are set to 1 nM.
The simulation results for the synchronous and asynchro-

nous moving-average filters are shown in Figures 15 and 16,

respectively. The input is a time-varying signal concentration X
with both high-frequency and low-frequency components. The
output is a time-varying signal concentration Y. Molecules of X
are injected and molecules of Y are collected from the systems
every 72 h for the synchronous scheme and every 20 h for the
asynchronous scheme. The figure shows the theoretical output,
i.e., an exact calculation of filtering, as well as simulation results.
We see that our design performs very well, filtering out the
high-frequency component as expected.

The simulation results for the synchronous an asynchronous
biquad filters are shown in Figures 17 and 18, respectively.
Here, molecules of X are injected and molecules of Y are
collected from the synchronous and asynchronous scheme
systems every 70 and 50 h, respectively. We supply step-like
and impulse-like changes in X. The figure shows the theoretical
output, i.e., an exact calculation of filtering, as well as simulation
results. As expected, the system performs “notch” filtering.5 The
simulation results show that even for a ratio λ = kfast/kslow as low
as 3, the systems perform well. In fact, in experimental
implementations of DNA strand displacement systems, a ratio λ
greater than 1000 is readily achievable. When λ is close to 1, i.e.,
fast reactions are not much faster than slow reactions, the
concentrations of the absence indicators r, g, and b are high

Figure 13. Abstract molecular reactions for different elements in Figure 12: (i) BF; (ii) multiplication by √2; (iii) multiplexer.

Figure 14. Example of DNA strand displacement.

Figure 15. Simulation results for the DNA implementation of the
synchronous moving average filter.

Figure 16. Simulation results for the DNA implementation of the
asynchronous moving average filter.
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even when the concentrations of R′, G′, or B′ are high. Also, the
computational modules slow down. Accordingly, the accuracy
of the computation degrades.
For the 8-point RFFT we choose 1, 1.5, 1, 0, 1, 1.5, 1, 0 as

the input sequence. Because the RFFT architecture has 4
parallel inputs, the input sequence is injected to the systems in
two stages. Concentrations for the inputs in the first and
second stages and their corresponding outputs are tabulated in
Table 1.

Figures 19 and 20 show the simulation results for the
synchronous and asynchronous RFFT circuits, respectively.
Table 2 compares the simulation results of the three operations,
namely, the moving-average filter, the biquad filter, and the
RFFT transform, in both the synchronous and asynchronous
frameworks. The error in this table is computed as the
difference between the output value obtained by simulation, Os,
and the theoretical output, Ot. On the one hand, Table 2 shows
that the synchronous scheme has lower error. On the other
hand, it is much slower than the asynchronous scheme.

■ CONCLUSION
There is a rich body of research discussing the implementation
of computation and logical functions with genetic regulatory
elements,9−14 and yet, despite concerted efforts by the synthetic
biology community, progress in the design of genetic circuits
seem to have stalled at the level of circuits with perhaps 7−15
components. In vivo engineering of such circuits is hard work,
fraught with experimental difficulties.
In contrast, in vitro molecular computation with DNA strand

displacement is following a Moore’s Law-like trajectory in the
scaling of its complexity.15 Indeed, Erik Winfree, Lulu Qian,
and their students at Caltech can routinely go from a design of
a DNA circuit with several hundred components to
experimental validation of it in a matter of weeks.
One of the great successes of electronic circuit design has

been in abstracting and scaling the design problem. The
physical behavior of transistors is understood in terms of
differential equations, say, with models found in tools such as
SPICE.16 However, the design of circuits occurs at more
abstract levels, in terms of switches, gates, and modules.

Figure 17. Simulation results for the DNA implementation of the
synchronous biquad filter.

Figure 18. Simulation results for the DNA implementation of the
asynchronous biquad filter.

Table 1. Input and Output Order for the 8-Point RFFT
Structure

stage I1 I2 I3 I4 O1 O2 O3 O4

first 1 1.5 1 0 7 1 0 0
second 1 1.5 1 0 0 3 0 0

Figure 19. Simulation results for DNA implementation of the
synchronous 8-point RFFT.

Figure 20. Simulation results for the DNA implementation of the
asynchronous 8-point RFFT.

Table 2. Comparison for Moving-Average, Biquad, and FFT
Designs, Synchronous and Asynchronous

system scheme
no. of

reactants
no. of

reactions
calculation
time (h)

% error

(
−O O
O

s t

t
× 100)

moving
average

synchronous 22 29 80 4.21

asynchronous 16 24 20 5.67
biquad synchronous 37 44 80 8.63

asynchronous 32 46 50 12.79
RFFT synchronous 119 202 900 7.8

asynchronous 213 225 425 22
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Research in molecular computation could benefit from this
hierarchical approach.
Although pertaining to biology, the contributions of this

paper are not experimental nor empirical; rather they are
constructive and conceptual. We have presented two general
methodologies for implementing signal processing with
molecular reactions. One of our methodologies uses clocking
to implement synchronous computation. The other one is self-
timed and asynchronous. In both cases, the computation itself is
essentially rate-independent, meaning that within a broad range
of values for the rate constants, the computation is exact and
independent of the specific rates.
Certainly, engineering complex new reaction mechanisms in

any experimental domain is a formidable task; for in vivo
systems, there are likely to be many experimental constraints on
the choice of reactions. However, the techniques that we have
presented here are robust and scalable. Tackling general
problems in molecular computation this way could be
transformative for applications such as drug delivery and
metabolic engineering.
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